Differential responses to thermal variation between fitness metrics

نویسندگان

  • Sabrina Clavijo-Baquet
  • Francisca Boher
  • Lucia Ziegler
  • Sebastián I. Martel
  • Sergio A. Estay
  • Francisco Bozinovic
چکیده

Temperature is a major factor affecting population abundance and individual performance. Net reproductive rate (R0) and intrinsic rate of increase (r) differ in their response to different temperature regimes, and much of the difference is mediated by generation time (Tg). Here, we evaluate the effects of thermal mean and variability on R0, r and Tg, at four population densities in Drosophila melanogaster. The results show that R0, r and Tg present differential responses to thermal variation. Although temperature effects on R0 and Tg are non-linear, r response was negligible. R0 and Tg comprise a generational time scale, while r is at a chronological time scale. Thus, we argue that individuals growing under different thermal environments perform similarly on a chronological scale, but differently on a generational scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary analyses of morphological and physiological plasticity in thermally variable environments

Morphological and physiological plasticity is often thought to represent an adaptive response to variable environments. However, determining whether a given pattern of plasticity is in fact adaptive is analytically challenging, as is evaluating the degree of and limits to adaptive plasticity. Here we describe a general methodological framework for studying the evolution of plastic responses. Th...

متن کامل

Seasonal variation in basal and plastic cold tolerance: Adaptation is influenced by both long‐ and short‐term phenotypic plasticity

Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an o...

متن کامل

Heat stress and the fitness consequences of climate change for terrestrial ectotherms

1. Climate change will increase both average temperatures and extreme summer temperatures. Analyses of the fitness consequences of climate change have generally omitted negative fitness and population declines associated with heat stress. 2. Here, we examine how seasonal and interannual temperature variability will impact fitness shifts of ectotherms from the past (1961–1990) to future (2071–21...

متن کامل

Genomic and transcriptomic signals of thermal tolerance in heat-tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf

Scleractinian corals occur in tropical regions near their upper thermal limits, and are severely threatened by rising ocean temperatures. Ocean warming leads to loss of symbiotic algae (Symbiodinium), reduced fitness for the coral host, and degradation of the reef. However, several recent studies have shown that natural populations of corals harbor genetic variation in thermal tolerance that ma...

متن کامل

Evolutionary Adaptation to Temperature. I. Fitness Responses of Escherichia Coli to Changes in Its Thermal Environment.

We used bacteria to study experimentally the process of genetic adaptation to environmental temperature. Replicate lines of Escherichia coli, founded from a common ancestor, were propagated for 2,000 generations in 4 different thermal regimes as 4 experimental groups: constant 32, 37, or 42°C (thermal specialists), or a daily alternation between 32 and 42°C (32/42°C: thermal generalists). The a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014